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Abstract
In this paper, we critically compare various deep learning
model architectures for mimicking the behavior of a driver
for autonomous driving. We have designed an indoor car
track and prepared the Autonomous-Arena dataset from
the dashcam images of a remote-controlled (RC) car. This
data is used to train deep learning models and predict the
steering direction of the vehicle. The data is fed into the
models after several preprocessing and augmentations. We
have applied Convolutional Neural Network (CNN) for the
classification of images. Various other models are also used,
including Recurrent Neural Network (RNN), a combination
of CNN and RNN, and Residual Network (ResNet). We show
that all these networks give comparable results and also
highlight the challenges with the data in training deep neural
networks.

Keywords: Autonomous-Arena, Autonomous Vehicle, Con-
volutional Neural Network.

1 Introduction
Deep learning has been a cynosure of the IT industry from
the last few years. It has shown near-human results in object
detection, natural language processing, dimensionality re-
duction, motion modeling, and many other fields. Although,
it has been there for decades now, recently, the increase in
the amount of data and computational power (in the form of
GPU) has accelerated the use of deep learning commercially.
The main reason for these extraordinary results of deep
learning is its ability to map complex nonlinear functions.

Deep learning offers various approaches to different kinds
of data. CNN is used for spatial data like images [1], it does
so by looking at different segments of the image for essential
features. RNN finds the relation between different parts of
data over time and can be used for temporal (time series)
data like text classification or language translation.

Many technological fields are using deep learning for one
or the other problem. Similarly, autonomous driving has
been an active area of research because of excellent results
in pedestrian detection [2, 3], vehicle detection [4, 5], and
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environment perception [6]. Additionally, many groups have
used deep learning for end-to-end autonomous driving [8].
Our project focuses on behavioral cloning by predicting

different directions in which a car should go, given an image
from a monocular camera. These images are passed through
a deep learning models, that are used to detect essential fea-
tures in an image and predict the direction in which the car
should be maneuvered. The goal of this work is to provide
proof of the concept that image data alone can be used to
drive a car autonomously. The code for the project is avail-
able at this link1.

2 Related Work
ALVINN [7] was among the very first attempts to use deep
learning in the field of autonomous driving for predicting the
direction of motion of the car. It followed a simple approach
where image pixels were given as input, and a shallow net-
work of three layers was used for predicting the direction.
Its success depicted that neural networks could be used for
this task.

Recently, NVIDIA [8] has given a full-fledged framework
using end-to-end deep learning for autonomous driving. This
framework shows the power of CNN to extract relevant
features from video frames, and use them in relatively simple
real-time scenarios such as lane following in obstacle-free
environments.
Brody Huval et al. [4] uses deep learning and computer

vision for car and lane detection. They applied a modified
version of selective search [10] and used object mask detector,
as described in Szegedy et al. [9], for the detection of vehicles
on road. For lane detection, they used the same CNN model
with regression over a six-dimensional feature vector.

Paul Drews et al. [12] combined model predictive control
(MPC) and CNN for high-speed autonomous driving. They
fed the image from a monocular camera into CNN, and the
cost function for MPC was predicted. This cost was then
directly supplied to the MPC algorithm for online trajectory
optimization.
Recently, Udacity started a challenge to build an open-

source self-driving car, and many people have come up with
great ideas. Greg Katz et al. [13] use LSTM along with CNN

1https://github.com/amanbasu/Autonomous-Car-Prototype
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(a) Indoor car track (b) Raspberry Pi controlled vehicle

Figure 1. (a) Circular track made using chart papers to generate the Autonomous-Arena dataset, (b) top view of the car which
was driven on the track. Different components used in the car were Raspberry Pi, camera, L-298 motor driver, aluminium
chassis, power bank, and 11.3V Li-Po battery.

(a) Original image (b) Resized image (c) Cropped image

Figure 2. Image preprocessing was applied to reduce the size
and remove the unnecessary information from the images.

for predicting the steering angle of the car. Shuyang Du et
al. [14] proposed two models, one with 3D CNN and LSTM
for covering Spatio-temporal features [15] having residual
connections, and the other with transfer learning.

Comma.ai [16] uses Variational Autoencoders for simulat-
ing driving control with classical and learned cost function
using Generative Adversarial Network (GAN) for learning
frame embeddings.
Ahmad El Sallab et al. [17] introduced Reinforcement

Learning for driver control combined with RNN for infor-
mation integration, which helped the system to handle a
partially visible environment. It also incorporates the atten-
tion mechanism to focus on the relevant information.

3 Dataset
Autonomous-Arena dataset was generated by running the RC
car on an indoor, circular track. The track was made of black
chart paper having dual lanes in white. The Raspberry Pi
controlled car was equipped with a camera that was mounted
on the front of the car. As the car was driven on the track,
the camera took images at 8 frames per second. A higher

frame rate would have lead to similar frames without gaining
relevant information. The track and car details can be seen
in Fig. 1.
The RC car was controlled by an android app that gave

signals to a bluetooth unit. The Raspberry Pi took input from
the bluetooth unit and maneuvered the car according to
the signal in the desired direction. There were three signals:
front (F), left (L), and right (R) to control the car. At each
image frame taken by the camera, the Bluetooth signal was
registered in the memory along with the image name at that
instance.

The car was driven in five sets having nearly 1000 images
each and at a different time of the day in different directions
to get a varied dataset. The final dataset contained almost
14,000 labeled images and can be found on Kaggle2.

3.1 Preprocessing and Augmentation
The dataset thus obtained was preprocessed before sending
it to the network. Images captured by the Raspberry Pi cam-
era were single channeled of size 480x640 pixels. To reduce
the number of pixels and thus, the training time, they were
resized to 24x32 pixels. Resizing to this resolution did not
cause any loss in feature since the main features in our data
i.e. the track lanes, were still conspicuous.
For the car to make a decision, it should be able to see

the things that are just in front of it, and not very far away
[11]. The camera took the images such that nearly half of
it contained meaningless information like a wall, window,
table, etc., in the upper region of the picture. Consequently,
all the images were cropped from above to 14x32 pixels, such

2https://www.kaggle.com/firstofhisname/indoor-car-track
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Figure 3. CNN architecture consisting of two convolution, one pooling, two fully connected and one output layer. The total
trainable parameters were 918,979.

that only the track lanes were visible. The preprocessing of
the image can be visualized in Fig. 2.
Another problem with the data was that it was skewed.

This meant that the number of samples for each class were
non-uniform. The reason for the skewness was that the track
contained more straight roads than the curved ones, and
moreover, the number of right and left turns were disparate.
The issue was resolved by flipping the images with turns
along the vertical axis, so that the number of left and right
labels become equal. This also increased the training data
size. To make the front labels equal to the one with turns,
they were under-sampled during the training process.

Each pixel value of the image was between 0 and 255. As a
common practice, we normalized these pixels to have a value
between 0 and 1. The normalization was done to reduce the
excess computation of large numeric values, which made the
model converge faster.

4 Network Architecture
We trained our data on four different network architectures,
the details of which are listed in the following sections.

4.1 CNN (Model 1)
The network was trained to reduce the cross-entropy error
between the predicted and the actual direction the car must
follow. The network architecture is shown in Fig. 3 that
consists of six layers, including two convolutions, one max
pool, one flattened, one fully connected, and one output
layer.
The input image was fed as a 14x32x1 matrix with the

pixel values normalized in the range of 0 to 1. Grayscale (one
channel) images were used since the track and lanes were in
black and white with the area above the horizon cropped. As
a result, there were no color-dependent features in the image
which the network could learn. The single-channeled image

reduced the training time and also the number of parameters
of the model.

The size and number of kernels to detect the features were
chosen empirically. In our model, the kernel size of 3x3 was
used with the stride of 1x1 in both the convolution layers.
As the image dimension was low, longer strides would have
missed useful features. 32 filters were used in the first convo-
lution layer, followed by 64 in the second layer. With kernel
size and stride of 2x2, the max pool layer reduced the image
size to 7x16x1 after the second convolution layer. Consequen-
tially, the flatten layer size was 7168x1 followed by one fully
connected layer of size 128x1, which finally produced three
outputs. Rectified linear unit (ReLU) activation function was
used between the layers to add the non-linearity.

A small network was chosen since the data was obtained
from a single source i.e. self-made track, so it lacked diversity.
Moreover, the number of features (only track lanes) were
very less.

4.2 LSTM (Model 2)
Convolutional neural networks are used to determine the
spatial relationship in the data. But, we wanted to test our
data for any temporal relationship. Therefore, we applied
recurrent neural networks and basically LSTM. LSTMs are a
special kind of RNN, that are capable of learning long-term
dependencies [19]. They work tremendously well on a large
variety of problems and are now widely used.

We experimented with various LSTM models with single
and stacked layers. The inputs were given as an array of
size 14xBx32 where B is the batch size. The value of B in
our models was 64. Each image was fed into the LSTM cell
one row at a time for the entire batch, and the output was
obtained as a single value i.e. the class label.

The first model contained a single LSTM layer of batch size
64 with 128 cells. In the second and third sequential models,
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Figure 4. Residual Network architecture with six groups of convolutional layers and one group of dense (fully connected)
layer. Five skip connections were made between the groups of convolutional layers.

two and three stacked LSTM layers were used respectively
with a dropout of 0.8 between the layers.

4.3 CNN+RNN (Model 3)
In this model, we tried the characteristics of both CNN and
RNN. CNN was used to get the low dimensional encoding
of the image that was passed to the LSTM layer to get the
output label.
The network architecture was nearly similar to the one

given in Fig. 3 with a few minor changes. Kernel size of
5x5 was used with the stride of 2x2 in the two convolution
layers with 32 filters in the first layer, and 64 in the second
layer. Max pool layer with the kernel size and stride of 2x2
reduced the image size to 7x16x1 after the first layer, and
to 4x8x1 after the second layer. A dropout of 0.8 was added
after every max pool layer. An LSTM layer, consisting of 64
cells was added between the flatten and the fully connected
layer. The output of the second max pool layer was reshaped
to 4xBx8 before passing to the LSTM layer, where B is the
batch size. This layer was followed by a dense layer of size
128x1, followed by the last layer giving 3 outputs.

4.4 ResNet (Model 4)
Deep neural networks are sometimes difficult to train be-
cause of the vanishing or exploding gradient problems. Skip
connections in Residual Network allow us to take the activa-
tion from one layer and feed it to another layer much deeper
in the neural network. We used the same intuition to make
our own residual network shown in Fig. 4.

The network consists of 7 groups of different layers with
all the convolution layers consisting of 32 filters with a kernel
size of 3x3 and stride of 1x1. In the first group, the input is
passed to the convolution layer, followed by the ReLu and
max pool layer of stride 2x2. The next group consists of two
convolutional layers without the pooling layer. The output
of this group is added to the output of the first group, thus
giving a skip connection. After applying the activation, the
result is passed to the next group.
The process is repeated with all the next four similar

groups. The output after the last skip connection is then

flattened and passed to a fully connected layer of 128 neu-
rons, which finally outputs the three classes.

5 Results
All our models were trained on the Nvidia Tesla K80 system
that offers a total of 24 GB of GDDR5 on-board memory (12
GB per GPU) and supports PCI Express Gen3. The compar-
ison of accuracy from all the models on the training and
testing set is given in Table. 1.

Table 1. A comparison of different network architectures
showing the number of epochs, training accuracy and testing
accuracy.

Architecture Dropout Epochs Accuracy

Train Test

Model 1 0.7 100 89.04 88.67
0.8 100 91.16 90.25

Model 2
1 layer - 50 91.84 89.93
2 layer 0.8 50 92.97 90.39
3 layer 0.8 100 95.70 90.34

Model 3 0.8 30 . . . . . . .70.28 . . . . . .69.83
Model 4 0.7 400 90.10 90.34

We experimented with a learning rate of 1e-3, 1e-4, and
1e-5 on our networks for small number of iterations and
observed an effective learning rate of 1e-4 that provided the
best results. Adam optimizer was used while training for
regulating the learning rate [18]. The mini-batch size of 64
was kept as it performed well on our data.

Model 1 converged very fast, considering the low-resolution
images and a shallow network. Further training would have
overfitted the training set. After multiple runs of the model,
we observed a training accuracy of 91.16% while a testing ac-
curacy of 90.25%. The accuracy and loss curves of the model
can be seen in Fig. 5(a). The activations of different filters in
the first convolutional layer can be visualized in Fig. 6. The
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(a)Model 1 (b) Model 2

(c) Model 3 (d)Model 4

Figure 5. Accuracy and loss curves of different network
architectures over number of iterations.

figure shows the efficiency of our model to detect the track
lanes in the data.
For Model 2, we experimented with single and stacked

LSTMs with two and three layers. It was found that the
model with a single LSTM layer gave a test accuracy of
89.93%. Whereas, the model with three stacked LSTM layers
was overfitting with training accuracy of 95.70% and testing
accuracy of 90.34%. Which made the model with two stacked
LSTM layers better than all sequential models, providing
90.39% accuracy, which was almost the same as that given
by the CNN model.

The results of Model 3 were not compelling. The accuracy
on the training as well as on the testing set was around
70%, which was worse than the accuracy of other models.
The intuition behind this model was that the convolutional
layers were used to find the lower dimensional encoding of
the input image, which was fed into the sequential model
to find the temporal relationships in these encodings. One
possible reason for the poor performance of this model might
be that the lower dimensional encoding obtained from the

(a) 14x32 dimensional feature maps.

(b) 480x640 dimensional feature maps.

Figure 6. Feature maps from the first convolutional layer
of Model 1 showing the efficacy of the model to detect the
track lanes.

convolutional layers lacked any temporal relation that the
sequential model could accurately represent.
Model 4 was trained with a batch size of 128. To prevent

overfitting, we applied a dropout of 0.7 between the layers.
The training was stopped when the loss curve started reach-
ing a plateau. This model was the deepest one in all our
models and took a long time to converge. It was trained for
almost 400 epochs, after which the loss became constant. We
achieved a testing accuracy of 90.34% that was comparable
with the accuracy of Model 1 and Model 2.

6 Error Analysis
Seeing the accuracy after training of all the models, it could
be said that the results were not exceptional. But actually,
the reason for such less accuracy could be the huge human
error that was introduced in the dataset while labeling. The
ambiguous interpretation of the track images also plays a
significant role in the error. In the following sections, some
of the reasons for this accuracy are mentioned in detail.
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(a) (b) (c)

Figure 7. Examples of (a), (b) wrongly labled images (c) noisy images unsuitable for training. The major contributors to the
poor performance of neural networks.

6.1 Wrong Labels
Human error played a huge role in the bad performance
of all the models. The images were labeled manually, and
therefore, there were high chances of human error. This can
be clarified by taking the examples of some training samples.
In Fig 7(a), the ground truth value of an image is given as R
(right) while the predicted value is F (front). This is a case
of wrong labeling. The ground truth label should have been
F because the car was at a safe distance from the boundary
lane and could have gone straight for a few frames, instead
of taking a right turn. Which means that the model correctly
predicted the label. The same mistake can be observed in Fig
7(b) where the car needed to go right instead of the front.

6.2 Noisy Image
Some of the training examples, like Fig 7(c), were not ob-
tained properly and contained noise. The reasons leading to
such unwanted noise could be the blurry or very bright im-
ages taken during the data generation phase or the errors in
preprocessing the data. Hence, such images were unsuitable
for training.

6.3 Ambiguous Interpretations
The track between the lanes on which the car ran was wide
enough. There was a gap of around 5cm on either side of the
road when the car was in between. Therefore, while labeling
the data, there could be two options when the car was at a
curve, either to take a turn on that frame and go straight in
the next or to go straight in that frame and take a turn on the
next one. Such situations led to the ambiguous interpretation
of the images while labeling and influenced the error.
A point to note here is that although the accuracy of the

model was low per se, the actual performance of the vehicle
on the track was better. It can be reasoned that when the
vehicle is on the turn, the model can predict any sequence
of front and left/right labels to make a successful turn.
And as long as the turn is made, it doesn’t matter what
this sequence was. So practically, the accuracy of the model
was good enough to be deployed on the autonomous car
prototype.

7 Conclusion & Future Work
This project was aimed at building a self-driving car that
maneuvers itself on a track. The project was divided into
three phases. The first phase included image generation that
was achieved by running the car and taking the picture of the
track in front of it. These images were appropriately labeled
with the direction in which the car was moving to make the
Autonomous-Arena dataset.

The second phase was to process the collected data and
make a deep neural network to map the input images to their
corresponding direction labels. Many different neural net-
work architectures were tried on the data, and their results
were compared.

And the third phase was to deploy this well-trained model
on the actual car and run it autonomously. Under the test con-
ditions, the vehicle drove well autonomously on the straight
track but sometimes struggled on the turns, by going off-
road.

It was observed that three of our four models were giving
an accuracy of around 90%. We also saw that the convolution
layers were able to detect primary features of the track, like
lanes, without providing any hand-engineered features. The
under-performance of the models and the reason for their
high bias was found in the form of human error while la-
beling the data along with other minor issues with the data.
We proved that only a good accuracy is not necessarily an
indicator of a well trained neural network as the car drove
well on the real track.

In the future, we would like to scale this approach to
real cars where the data is much larger and the process
more complicated. As the end-to-end approach is difficult
to apply on real cars due to varied natural conditions and
computational requirements, we would like to work on other
sensory information that could be incorporated to make
better decisions.
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